The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^2  1  1  1
 0 X^2+2  0  0  0 X^2 X^2+2 X^2  0  2 X^2 X^2+2  2  2 X^2 X^2 X^2  0 X^2+2  2  2 X^2+2 X^2  2  2 X^2  0  0  0 X^2+2 X^2 X^2+2  0 X^2+2  2  0 X^2+2  0 X^2+2 X^2 X^2+2  0 X^2 X^2  2  0  2  2  2
 0  0 X^2+2  0 X^2 X^2 X^2+2  0  0 X^2+2 X^2+2  2  0 X^2 X^2  2 X^2+2  2 X^2+2  2 X^2  0  2 X^2  0 X^2  2 X^2 X^2  0  2 X^2  2  2 X^2+2  2 X^2 X^2+2 X^2  0 X^2 X^2+2  0  0 X^2+2 X^2+2 X^2+2  0  2
 0  0  0 X^2+2 X^2  0 X^2+2 X^2  2 X^2 X^2  0 X^2  2  2 X^2+2 X^2+2  2  2 X^2+2 X^2 X^2+2  0  0  0 X^2 X^2+2 X^2+2  2 X^2  2  2  0 X^2  0 X^2 X^2 X^2  0  0 X^2+2  2  2 X^2+2 X^2+2  0  2 X^2+2 X^2+2

generates a code of length 49 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 45.

Homogenous weight enumerator: w(x)=1x^0+24x^45+31x^46+36x^47+226x^48+404x^49+226x^50+20x^51+20x^52+20x^53+7x^54+8x^55+1x^96

The gray image is a code over GF(2) with n=392, k=10 and d=180.
This code was found by Heurico 1.16 in 0.079 seconds.